
Particle Physics, 10 000 times faster

Jim Pivarski

Princeton University – DIANA

September 30, 2017

1 / 27

Particle physics: the most industrial field of academia

The goals are academic:
to explore strange new
phenomena; to seek out
new particles and new
interactions. . .

The scale is industrial:
billion dollar hardware,
planning on decadal time-
scales, millions of lines of
code. . .

2 / 27

It’s big data. . .

3 / 27

It’s big data. . . but not really big

3 / 27

On the third hand, it will be getting bigger. . .

4 / 27

On the third hand, it will be getting bigger. . .

4 / 27

Our software developed outside the big data ecosystem

It’s my job to try to find ways
to bridge the divide.

5 / 27

Our software developed ���
��XXXXXoutside before the big data ecosystem

It’s my job to try to find ways
to bridge the divide.

5 / 27

Our software developed ���
��XXXXXoutside before the big data ecosystem

It’s my job to try to find ways
to bridge the divide.

5 / 27

The obstacles are not just accidental— artifacts of technology choice
(e.g. C++ in particle physics and Java in the Hadoop/Spark world).

There are also essential qualities that current big data systems don’t offer.

This represents an opportunity on both sides: alien civilizations that evolved on
different planets can learn a lot from each other!

6 / 27

The obstacles are not just accidental— artifacts of technology choice
(e.g. C++ in particle physics and Java in the Hadoop/Spark world).

There are also essential qualities that current big data systems don’t offer.

This represents an opportunity on both sides: alien civilizations that evolved on
different planets can learn a lot from each other!

6 / 27

So, what is unique about particle physics data?

It’s not the size (100’s of PB).

Arguably, it’s the object complexity.

This picture represents one “row” in our
data “table.”

7 / 27

So, what is unique about particle physics data?

It’s not the size (100’s of PB).

Arguably, it’s the object complexity.

This picture represents one “row” in our
data “table.”

7 / 27

So, what is unique about particle physics data?

It’s not the size (100’s of PB).

Arguably, it’s the object complexity.

This picture represents one “row” in our
data “table.”

7 / 27

So, what is unique about particle physics data?

It’s not the size (100’s of PB).

Arguably, it’s the object complexity.

This picture represents one “row” in our
data “table.”

7 / 27

Why are “row” and “table” in quotation marks?

Because our data are stored in files, not databases.

I We don’t benefit from indexing, query planning, or high-level query
languages.

I Every data pull is a custom C++ program, accessing lists of files, taking
months while the user chases down failures and stragglers.

I But if our data were in a conventional (relational or NoSQL) database, the
first thing we’d have to do is extract it and work with files again.

Why?

8 / 27

Why are “row” and “table” in quotation marks?

Because our data are stored in files, not databases.

I We don’t benefit from indexing, query planning, or high-level query
languages.

I Every data pull is a custom C++ program, accessing lists of files, taking
months while the user chases down failures and stragglers.

I But if our data were in a conventional (relational or NoSQL) database, the
first thing we’d have to do is extract it and work with files again.

Why?

8 / 27

Why are “row” and “table” in quotation marks?

Because our data are stored in files, not databases.

I We don’t benefit from indexing, query planning, or high-level query
languages.

I Every data pull is a custom C++ program, accessing lists of files, taking
months while the user chases down failures and stragglers.

I But if our data were in a conventional (relational or NoSQL) database, the
first thing we’d have to do is extract it and work with files again.

Why?

8 / 27

Why are “row” and “table” in quotation marks?

Because our data are stored in files, not databases.

I We don’t benefit from indexing, query planning, or high-level query
languages.

I Every data pull is a custom C++ program, accessing lists of files, taking
months while the user chases down failures and stragglers.

I But if our data were in a conventional (relational or NoSQL) database, the
first thing we’d have to do is extract it and work with files again.

Why?

8 / 27

Why are “row” and “table” in quotation marks?

Because our data are stored in files, not databases.

I We don’t benefit from indexing, query planning, or high-level query
languages.

I Every data pull is a custom C++ program, accessing lists of files, taking
months while the user chases down failures and stragglers.

I But if our data were in a conventional (relational or NoSQL) database, the
first thing we’d have to do is extract it and work with files again.

Why?

8 / 27

Why are “row” and “table” in quotation marks?

Because our data are stored in files, not databases.

I We don’t benefit from indexing, query planning, or high-level query
languages.

I Every data pull is a custom C++ program, accessing lists of files, taking
months while the user chases down failures and stragglers.

I But if our data were in a conventional (relational or NoSQL) database, the
first thing we’d have to do is extract it and work with files again.

Why?
8 / 27

Our data are deeply nested
and cross-linked

I Not a problem nowadays, as Drill,
Parquet, and Arrow can explode
nested structures into columns for
fast, sparse access.

(We’ve been doing it since the 90’s.)

I Cross-links (pointers) could be
supported by a graph database.

(Though list indexes work well enough
for our large number of small graphs.)

The operations we perform make
intensive use of that structure

I We frequently need to search sublists
under constraints, optimize pairings,
iterate over combinatorics. . .

I Even the simplest particle physics
search criteria would require explodes,
tags, and joins in SQL.

To give a sense of the problem, I’ll walk
through the steps of an analysis.

9 / 27

Our data are deeply nested
and cross-linked

I Not a problem nowadays, as Drill,
Parquet, and Arrow can explode
nested structures into columns for
fast, sparse access.

(We’ve been doing it since the 90’s.)

I Cross-links (pointers) could be
supported by a graph database.

(Though list indexes work well enough
for our large number of small graphs.)

The operations we perform make
intensive use of that structure

I We frequently need to search sublists
under constraints, optimize pairings,
iterate over combinatorics. . .

I Even the simplest particle physics
search criteria would require explodes,
tags, and joins in SQL.

To give a sense of the problem, I’ll walk
through the steps of an analysis.

9 / 27

Our data are deeply nested
and cross-linked

I Not a problem nowadays, as Drill,
Parquet, and Arrow can explode
nested structures into columns for
fast, sparse access.

(We’ve been doing it since the 90’s.)

I Cross-links (pointers) could be
supported by a graph database.

(Though list indexes work well enough
for our large number of small graphs.)

The operations we perform make
intensive use of that structure

I We frequently need to search sublists
under constraints, optimize pairings,
iterate over combinatorics. . .

I Even the simplest particle physics
search criteria would require explodes,
tags, and joins in SQL.

To give a sense of the problem, I’ll walk
through the steps of an analysis.

9 / 27

Our data are deeply nested
and cross-linked

I Not a problem nowadays, as Drill,
Parquet, and Arrow can explode
nested structures into columns for
fast, sparse access.

(We’ve been doing it since the 90’s.)

I Cross-links (pointers) could be
supported by a graph database.

(Though list indexes work well enough
for our large number of small graphs.)

The operations we perform make
intensive use of that structure

I We frequently need to search sublists
under constraints, optimize pairings,
iterate over combinatorics. . .

I Even the simplest particle physics
search criteria would require explodes,
tags, and joins in SQL.

To give a sense of the problem, I’ll walk
through the steps of an analysis.

9 / 27

Our data are deeply nested
and cross-linked

I Not a problem nowadays, as Drill,
Parquet, and Arrow can explode
nested structures into columns for
fast, sparse access.

(We’ve been doing it since the 90’s.)

I Cross-links (pointers) could be
supported by a graph database.

(Though list indexes work well enough
for our large number of small graphs.)

The operations we perform make
intensive use of that structure

I We frequently need to search sublists
under constraints, optimize pairings,
iterate over combinatorics. . .

I Even the simplest particle physics
search criteria would require explodes,
tags, and joins in SQL.

To give a sense of the problem, I’ll walk
through the steps of an analysis.

9 / 27

Our data are deeply nested
and cross-linked

I Not a problem nowadays, as Drill,
Parquet, and Arrow can explode
nested structures into columns for
fast, sparse access.

(We’ve been doing it since the 90’s.)

I Cross-links (pointers) could be
supported by a graph database.

(Though list indexes work well enough
for our large number of small graphs.)

The operations we perform make
intensive use of that structure

I We frequently need to search sublists
under constraints, optimize pairings,
iterate over combinatorics. . .

I Even the simplest particle physics
search criteria would require explodes,
tags, and joins in SQL.

To give a sense of the problem, I’ll walk
through the steps of an analysis.

9 / 27

Our data are deeply nested
and cross-linked

I Not a problem nowadays, as Drill,
Parquet, and Arrow can explode
nested structures into columns for
fast, sparse access.

(We’ve been doing it since the 90’s.)

I Cross-links (pointers) could be
supported by a graph database.

(Though list indexes work well enough
for our large number of small graphs.)

The operations we perform make
intensive use of that structure

I We frequently need to search sublists
under constraints, optimize pairings,
iterate over combinatorics. . .

I Even the simplest particle physics
search criteria would require explodes,
tags, and joins in SQL.

To give a sense of the problem, I’ll walk
through the steps of an analysis.

9 / 27

From raw signals to tracks

Can you see the particle tracks?

10 / 27

From raw signals to tracks

How about now?

10 / 27

From raw signals to tracks

10 / 27

From raw signals to tracks

10 / 27

From raw signals to tracks

10 / 27

From raw signals to tracks

Raw data could have been a (sparsely filled)
table, but tracks are an arbitrary-length list of
objects.

10 / 27

From tracks to particles

Tracks are long-lived particles (on the nanosecond scale) that came from the decay of
very short-lived particles.

Tracks have structured associations with one another, and those associations are not
certain: flexibility has to be carried through to the final analysis.

11 / 27

From tracks to particles

Tracks are long-lived particles (on the nanosecond scale) that came from the decay of
very short-lived particles.

Tracks have structured associations with one another, and those associations are not
certain: flexibility has to be carried through to the final analysis.

11 / 27

And there are a lot of combinations to consider. . .

12 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−µ+µ−

13 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−µ+µ−

13 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−µ+µ−

13 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−µ+µ−

13 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−µ+µ−

13 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−︸ ︷︷ ︸µ+µ−

13 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−︸ ︷︷ ︸µ+µ−︸ ︷︷ ︸

13 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−︸ ︷︷ ︸ µ+µ−︸ ︷︷ ︸︸ ︷︷ ︸
compute mass of progenitor

13 / 27

From particles to discovery

Suppose there’s a particle called “Higgs” that would
decay into two “Z bosons,” each of which decays
into two electrons or two muons.

H → ZZ → e+e−︸ ︷︷ ︸ µ+µ−︸ ︷︷ ︸︸ ︷︷ ︸
compute mass of progenitor

13 / 27

Objects versus flat tables

To try different associations between particles, between data from different detectors,
in many different combinations. . .

. . . it’s easier to write these as algorithms over objects!

14 / 27

Modern SQL can represent that

CREATE TYPE PARTICLE FROM
STRUCT<pt: FLOAT,

eta: FLOAT,
phi: FLOAT
charge: INT>;

CREATE TABLE events (
eventid INT,
electrons ARRAY<PARTICLE>,
muons ARRAY<PARTICLE>,
UNIQUE KEY eventid

);

But to do the Higgs search, you’d have to

1. explode the electrons array into a table,

2. explode the muons array into a table,

3. do an outer join of the electrons table on
itself, subject to the constraints that they have
the same eventid and opposite charge,

4. filter for those close to the Z mass,

5. do the same for the muons table,

6. do a join of those two tables to compute H
masses,

7. group-by to make a histogram.

This is in no way easier than writing a nested for loop!

15 / 27

Modern SQL can represent that

CREATE TYPE PARTICLE FROM
STRUCT<pt: FLOAT,

eta: FLOAT,
phi: FLOAT
charge: INT>;

CREATE TABLE events (
eventid INT,
electrons ARRAY<PARTICLE>,
muons ARRAY<PARTICLE>,
UNIQUE KEY eventid

);

But to do the Higgs search, you’d have to

1. explode the electrons array into a table,

2. explode the muons array into a table,

3. do an outer join of the electrons table on
itself, subject to the constraints that they have
the same eventid and opposite charge,

4. filter for those close to the Z mass,

5. do the same for the muons table,

6. do a join of those two tables to compute H
masses,

7. group-by to make a histogram.

This is in no way easier than writing a nested for loop!

15 / 27

Modern SQL can represent that

CREATE TYPE PARTICLE FROM
STRUCT<pt: FLOAT,

eta: FLOAT,
phi: FLOAT
charge: INT>;

CREATE TABLE events (
eventid INT,
electrons ARRAY<PARTICLE>,
muons ARRAY<PARTICLE>,
UNIQUE KEY eventid

);

But to do the Higgs search, you’d have to

1. explode the electrons array into a table,

2. explode the muons array into a table,

3. do an outer join of the electrons table on
itself, subject to the constraints that they have
the same eventid and opposite charge,

4. filter for those close to the Z mass,

5. do the same for the muons table,

6. do a join of those two tables to compute H
masses,

7. group-by to make a histogram.

This is in no way easier than writing a nested for loop!

15 / 27

Femtocode

We can get the best of both worlds by adding first-class functions to SQL.

Last year, I started developing Femtocode: a declarative query language with a
functional, object-oriented syntax.

dataset.histogram(90, 80, 170, flatten({event =>
electrons = event.tracks.filter(

e => 0.9 < e.calorimeterEnergy / e.trackMomentum < 1.1)
muons = event.tracks.filter(m => m.outerHits > 4)

def goodz(p1, p2):
p1.charge * p2.charge < 0 and 60 < mass(p1, p2) < 120

ez = electrons.distinctpairs.filter(goodz)
mz = muons.distinctpairs.filter(goodz)

table(ez, mz).map((e1, e2), (m1, m2) => mass(e1, e2, m1, m2))
}))

16 / 27

Femtocode

We can get the best of both worlds by adding first-class functions to SQL.

Last year, I started developing Femtocode: a declarative query language with a
functional, object-oriented syntax.

dataset.histogram(90, 80, 170, flatten({event =>
electrons = event.tracks.filter(

e => 0.9 < e.calorimeterEnergy / e.trackMomentum < 1.1)
muons = event.tracks.filter(m => m.outerHits > 4)

def goodz(p1, p2):
p1.charge * p2.charge < 0 and 60 < mass(p1, p2) < 120

ez = electrons.distinctpairs.filter(goodz)
mz = muons.distinctpairs.filter(goodz)

table(ez, mz).map((e1, e2), (m1, m2) => mass(e1, e2, m1, m2))
}))

16 / 27

Why the language is great and I won’t be talking about it

By shrink-wrapping the
language around our
problem, we could add
some nice features:

I automatically
vectorize calculations
across objects

I 100% compile-time
error checking with
dependent types

In the past year, other
projects started adding
functional programming
to query languages:

I SparkSQL 3.0’s
TRANSFORM keyword

I DataFun: Michael
Arntzenius’s talk in
US Regency AB!

Meanwhile, we discovered
that Femtocode’s internal
data representation is
orders of magnitude faster
to scan than our current
methods.

This is the key issue.

We can apply the new data
representation on its own,
without introducing a new
language.

17 / 27

Why the language is great and I won’t be talking about it

By shrink-wrapping the
language around our
problem, we could add
some nice features:

I automatically
vectorize calculations
across objects

I 100% compile-time
error checking with
dependent types

In the past year, other
projects started adding
functional programming
to query languages:

I SparkSQL 3.0’s
TRANSFORM keyword

I DataFun: Michael
Arntzenius’s talk in
US Regency AB!

Meanwhile, we discovered
that Femtocode’s internal
data representation is
orders of magnitude faster
to scan than our current
methods.

This is the key issue.

We can apply the new data
representation on its own,
without introducing a new
language.

17 / 27

Why the language is great and I won’t be talking about it

By shrink-wrapping the
language around our
problem, we could add
some nice features:

I automatically
vectorize calculations
across objects

I 100% compile-time
error checking with
dependent types

In the past year, other
projects started adding
functional programming
to query languages:

I SparkSQL 3.0’s
TRANSFORM keyword

I DataFun: Michael
Arntzenius’s talk in
US Regency AB!

Meanwhile, we discovered
that Femtocode’s internal
data representation is
orders of magnitude faster
to scan than our current
methods.

This is the key issue.

We can apply the new data
representation on its own,
without introducing a new
language.

17 / 27

Why the language is great and I won’t be talking about it

By shrink-wrapping the
language around our
problem, we could add
some nice features:

I automatically
vectorize calculations
across objects

I 100% compile-time
error checking with
dependent types

In the past year, other
projects started adding
functional programming
to query languages:

I SparkSQL 3.0’s
TRANSFORM keyword

I DataFun: Michael
Arntzenius’s talk in
US Regency AB!

Meanwhile, we discovered
that Femtocode’s internal
data representation is
orders of magnitude faster
to scan than our current
methods.

This is the key issue.

We can apply the new data
representation on its own,
without introducing a new
language.

17 / 27

Why the language is great and I won’t be talking about it

By shrink-wrapping the
language around our
problem, we could add
some nice features:

I automatically
vectorize calculations
across objects

I 100% compile-time
error checking with
dependent types

In the past year, other
projects started adding
functional programming
to query languages:

I SparkSQL 3.0’s
TRANSFORM keyword

I DataFun: Michael
Arntzenius’s talk in
US Regency AB!

Meanwhile, we discovered
that Femtocode’s internal
data representation is
orders of magnitude faster
to scan than our current
methods.

This is the key issue.

We can apply the new data
representation on its own,
without introducing a new
language.

17 / 27

Why the language is great and I won’t be talking about it

By shrink-wrapping the
language around our
problem, we could add
some nice features:

I automatically
vectorize calculations
across objects

I 100% compile-time
error checking with
dependent types

In the past year, other
projects started adding
functional programming
to query languages:

I SparkSQL 3.0’s
TRANSFORM keyword

I DataFun: Michael
Arntzenius’s talk in
US Regency AB!

Meanwhile, we discovered
that Femtocode’s internal
data representation is
orders of magnitude faster
to scan than our current
methods.

This is the key issue.

We can apply the new data
representation on its own,
without introducing a new
language.

17 / 27

Iteration over single attribute in many objects

Such as (single-threaded):

for (i = 0; i < numEvents; i++)
for (j = 0; j < events[i].numTracks; j++)

fill_histogram(events[i].tracks[j].trackMomentum);

Four orders of magnitude between how we currently access data
and how we could access data!

0.018 MHz our current framework

0.029 MHz deserialize into Track instances with all 95 track attributes

2.8 MHz deserialize into std::vectors of single-attribute Track instances

12 MHz allocate std::vector<double*> on heap for each event; then delete

31 MHz allocate std::vector<double> on stack for each event

250 MHz minimal loop over flattened trackMomentum array

18 / 27

Iteration over single attribute in many objects

Such as (single-threaded):

for (i = 0; i < numEvents; i++)
for (j = 0; j < events[i].numTracks; j++)

fill_histogram(events[i].tracks[j].trackMomentum);

Four orders of magnitude between how we currently access data
and how we could access data!

0.018 MHz our current framework

0.029 MHz deserialize into Track instances with all 95 track attributes

2.8 MHz deserialize into std::vectors of single-attribute Track instances

12 MHz allocate std::vector<double*> on heap for each event; then delete

31 MHz allocate std::vector<double> on stack for each event

250 MHz minimal loop over flattened trackMomentum array

18 / 27

Iteration over single attribute in many objects

Such as (single-threaded):

for (i = 0; i < numEvents; i++)
for (j = 0; j < events[i].numTracks; j++)

fill_histogram(events[i].tracks[j].trackMomentum);

Four orders of magnitude between how we currently access data
and how we could access data!

0.018 MHz our current framework

0.029 MHz deserialize into Track instances with all 95 track attributes

2.8 MHz deserialize into std::vectors of single-attribute Track instances

12 MHz allocate std::vector<double*> on heap for each event; then delete

31 MHz allocate std::vector<double> on stack for each event

250 MHz minimal loop over flattened trackMomentum array

18 / 27

Iteration over single attribute in many objects

Such as (single-threaded):

for (i = 0; i < numEvents; i++)
for (j = 0; j < events[i].numTracks; j++)

fill_histogram(events[i].tracks[j].trackMomentum);

Four orders of magnitude between how we currently access data
and how we could access data!

0.018 MHz our current framework

0.029 MHz deserialize into Track instances with all 95 track attributes

2.8 MHz deserialize into std::vectors of single-attribute Track instances

12 MHz allocate std::vector<double*> on heap for each event; then delete

31 MHz allocate std::vector<double> on stack for each event

250 MHz minimal loop over flattened trackMomentum array

18 / 27

Iteration over single attribute in many objects

Such as (single-threaded):

for (i = 0; i < numEvents; i++)
for (j = 0; j < events[i].numTracks; j++)

fill_histogram(events[i].tracks[j].trackMomentum);

Four orders of magnitude between how we currently access data
and how we could access data!

0.018 MHz our current framework

0.029 MHz deserialize into Track instances with all 95 track attributes

2.8 MHz deserialize into std::vectors of single-attribute Track instances

12 MHz allocate std::vector<double*> on heap for each event; then delete

31 MHz allocate std::vector<double> on stack for each event

250 MHz minimal loop over flattened trackMomentum array

18 / 27

To be fair. . .

The current framework is never used to fill only one histogram.

It’s usually used to extract a subset of events and attributes for the physicist to
analyze locally (laptop, university cluster, national lab).

1. These jobs take weeks or months.

2. The data analyst has to manage sets of files and chase down failed jobs.

3. Repeating the process is so time-consuming that analysis groups hedge their
bets by requesting more data than they’re sure they’ll need.

4. So the process is slower and the downloaded dataset is bigger.

5. GOTO #1.

19 / 27

To be fair. . .

The current framework is never used to fill only one histogram.

It’s usually used to extract a subset of events and attributes for the physicist to
analyze locally (laptop, university cluster, national lab).

1. These jobs take weeks or months1.

2. The data analyst has to manage sets of files and chase down failed jobs.

3. Repeating the process is so time-consuming that analysis groups hedge their
bets by requesting more data than they’re sure they’ll need.

4. So the process is slower and the downloaded dataset is bigger.

5. GOTO #1.

1one analyst claimed 1.5 years for a single data pull!
19 / 27

To be fair. . .

The current framework is never used to fill only one histogram.

It’s usually used to extract a subset of events and attributes for the physicist to
analyze locally (laptop, university cluster, national lab).

1. These jobs take weeks or months1.

2. The data analyst2 has to manage sets of files and chase down failed jobs.

3. Repeating the process is so time-consuming that analysis groups hedge their
bets by requesting more data than they’re sure they’ll need.

4. So the process is slower and the downloaded dataset is bigger.

5. GOTO #1.

1one analyst claimed 1.5 years for a single data pull!
2usually the youngest graduate student

19 / 27

To be fair. . .

The current framework is never used to fill only one histogram.

It’s usually used to extract a subset of events and attributes for the physicist to
analyze locally (laptop, university cluster, national lab).

1. These jobs take weeks or months1.

2. The data analyst2 has to manage sets of files and chase down failed jobs.

3. Repeating the process is so time-consuming that analysis groups hedge their
bets by requesting more data than they’re sure they’ll need.

4. So the process is slower and the downloaded dataset is bigger.

5. GOTO #1.

1one analyst claimed 1.5 years for a single data pull!
2usually the youngest graduate student

19 / 27

To be fair. . .

The current framework is never used to fill only one histogram.

It’s usually used to extract a subset of events and attributes for the physicist to
analyze locally (laptop, university cluster, national lab).

1. These jobs take weeks or months1.

2. The data analyst2 has to manage sets of files and chase down failed jobs.

3. Repeating the process is so time-consuming that analysis groups hedge their
bets by requesting more data than they’re sure they’ll need.

4. So the process is slower and the downloaded dataset is bigger.

5. GOTO #1.

1one analyst claimed 1.5 years for a single data pull!
2usually the youngest graduate student

19 / 27

To be fair. . .

The current framework is never used to fill only one histogram.

It’s usually used to extract a subset of events and attributes for the physicist to
analyze locally (laptop, university cluster, national lab).

1. These jobs take weeks or months1.

2. The data analyst2 has to manage sets of files and chase down failed jobs.

3. Repeating the process is so time-consuming that analysis groups hedge their
bets by requesting more data than they’re sure they’ll need.

4. So the process is slower and the downloaded dataset is bigger.

5. GOTO #1.

1one analyst claimed 1.5 years for a single data pull!
2usually the youngest graduate student

19 / 27

So this is really about a change in behavior:

(1)

big download, work locally
(2)

small operations on a shared resource

For the new style of analysis workflow to compete,

I responses must be rapid enough for end-user analysis
(seconds per plot)

I the interface must allow for algorithms on nested objects.

20 / 27

So this is really about a change in behavior:

(1)

big download, work locally
(2)

small operations on a shared resource

For the new style of analysis workflow to compete,

I responses must be rapid enough for end-user analysis
(seconds per plot)

I the interface must allow for algorithms on nested objects.

20 / 27

So this is really about a change in behavior:

(1)

big download, work locally
(2)

small operations on a shared resource

For the new style of analysis workflow to compete,

I responses must be rapid enough for end-user analysis
(seconds per plot)

I the interface must allow for algorithms on nested objects.

20 / 27

So this is really about a change in behavior:

(1)

big download, work locally
(2)

small operations on a shared resource

For the new style of analysis workflow to compete,

I responses must be rapid enough for end-user analysis
(seconds per plot)

I the interface must allow for algorithms on nested objects.

20 / 27

Key idea: leave the data in columns!

21 / 27

Leave the data in columns!

We’ve always stored the data as exploded columns (similar to Apache Parquet), but we
also shouldn’t spend time materializing them as objects.

Suppose that [[[a, b, c, d], [], [e, f]], [], [[g]]] is stored as

Suppose that [0, 3, 3, 4] (outer list offsets)
Suppose that [0, 4, 4, 6, 7] (inner list offsets)
Suppose that [a, b, c, d, e, f, g] (attribute data)

when the user writes

for outer in lists:
for inner in outer:

for char in inner:
print(char)

The data representation is Apache Arrow; the code transformation can be automated.

22 / 27

Leave the data in columns!

We’ve always stored the data as exploded columns (similar to Apache Parquet), but we
also shouldn’t spend time materializing them as objects.

Suppose that [[[a, b, c, d], [], [e, f]], [], [[g]]] is stored as
Suppose that [0, 3, 3, 4] (outer list offsets)
Suppose that [0, 4, 4, 6, 7] (inner list offsets)
Suppose that [a, b, c, d, e, f, g] (attribute data)

when the user writes

for outer in lists:
for inner in outer:

for char in inner:
print(char)

The data representation is Apache Arrow; the code transformation can be automated.

22 / 27

Leave the data in columns!

We’ve always stored the data as exploded columns (similar to Apache Parquet), but we
also shouldn’t spend time materializing them as objects.

Suppose that [[[a, b, c, d], [], [e, f]], [], [[g]]] is stored as
Suppose that [0, 3, 3, 4] (outer list offsets)
Suppose that [0, 4, 4, 6, 7] (inner list offsets)
Suppose that [a, b, c, d, e, f, g] (attribute data)

when the user writes

for outer in lists:
for inner in outer:

for char in inner:
print(char)

The data representation is Apache Arrow; the code transformation can be automated.

22 / 27

Leave the data in columns!

We’ve always stored the data as exploded columns (similar to Apache Parquet), but we
also shouldn’t spend time materializing them as objects.

Suppose that [[[a, b, c, d], [], [e, f]], [], [[g]]] is stored as
Suppose that [0, 3, 3, 4] (outer list offsets)
Suppose that [0, 4, 4, 6, 7] (inner list offsets)
Suppose that [a, b, c, d, e, f, g] (attribute data)

when the user writes

for outer in lists:
for inner in outer:

for char in inner:
print(char)

we shouldn’t create lists and sublists. . .

The data representation is Apache Arrow; the code transformation can be automated.

22 / 27

Leave the data in columns!

We’ve always stored the data as exploded columns (similar to Apache Parquet), but we
also shouldn’t spend time materializing them as objects.

Suppose that [[[a, b, c, d], [], [e, f]], [], [[g]]] is stored as
Suppose that [0, 3, 3, 4] (outer list offsets)
Suppose that [0, 4, 4, 6, 7] (inner list offsets)
Suppose that [a, b, c, d, e, f, g] (attribute data)

when the user writes

for outer in lists:
for inner in outer:

for char in inner:
print(char)

we should instead execute

for (i = 0; i < 3; i++)
for (j = outer[i]; j < outer[i+1]; j++)

for (k = inner[j]; k < inner[j+1]; k++)
print(data[k]);

The data representation is Apache Arrow; the code transformation can be automated.

22 / 27

Leave the data in columns!

We’ve always stored the data as exploded columns (similar to Apache Parquet), but we
also shouldn’t spend time materializing them as objects.

Suppose that [[[a, b, c, d], [], [e, f]], [], [[g]]] is stored as
Suppose that [0, 3, 3, 4] (outer list offsets)
Suppose that [0, 4, 4, 6, 7] (inner list offsets)
Suppose that [a, b, c, d, e, f, g] (attribute data)

when the user writes

for outer in lists:
for inner in outer:

for char in inner:
print(char)

or even (special case of exhaustive nested loops)

for (k = 0; k < inner[outer[3]]; k++)
print(data[k]);

The data representation is Apache Arrow; the code transformation can be automated.

22 / 27

Leave the data in columns!

We’ve always stored the data as exploded columns (similar to Apache Parquet), but we
also shouldn’t spend time materializing them as objects.

Suppose that [[[a, b, c, d], [], [e, f]], [], [[g]]] is stored as
Suppose that [0, 3, 3, 4] (outer list offsets)
Suppose that [0, 4, 4, 6, 7] (inner list offsets)
Suppose that [a, b, c, d, e, f, g] (attribute data)

when the user writes

for outer in lists:
for inner in outer:

for char in inner:
print(char)

or even (special case of exhaustive nested loops)

for (k = 0; k < inner[outer[3]]; k++)
print(data[k]);

The data representation is Apache Arrow; the code transformation can be automated.

22 / 27

Measurements in a real system

I’m using Python as a stepping-stone toward Femtocode. By transforming Python
object references, we can turn it into nothing but arrays and number-crunching.

Numba, a Python-to-LLVM compiler, is particularly good at optimizing this.

objects in Python code
def dimuon(event):

n = len(event.muons)
for i in range(n):

for j in range(i+1, n):
m1 = event.muons[i]
m2 = event.muons[j]
mass = sqrt(2*m1.pt*m2.pt*(

cosh(m1.eta - m2.eta) -
cos(m1.phi - m2.phi)))

fill_histogram(mass)

translated to array references
plur.compile.run(arrays, dimuon)

23 / 27

Measurements in a real system

I’m using Python as a stepping-stone toward Femtocode. By transforming Python
object references, we can turn it into nothing but arrays and number-crunching.

Numba, a Python-to-LLVM compiler, is particularly good at optimizing this.

objects in Python code
def dimuon(event):

n = len(event.muons)
for i in range(n):

for j in range(i+1, n):
m1 = event.muons[i]
m2 = event.muons[j]
mass = sqrt(2*m1.pt*m2.pt*(

cosh(m1.eta - m2.eta) -
cos(m1.phi - m2.phi)))

fill_histogram(mass)

translated to array references
plur.compile.run(arrays, dimuon)

23 / 27

Measurements in a real system

I’m using Python as a stepping-stone toward Femtocode. By transforming Python
object references, we can turn it into nothing but arrays and number-crunching.

Numba, a Python-to-LLVM compiler, is particularly good at optimizing this.

objects in Python code
def dimuon(event):

n = len(event.muons)
for i in range(n):

for j in range(i+1, n):
m1 = event.muons[i]
m2 = event.muons[j]
mass = sqrt(2*m1.pt*m2.pt*(

cosh(m1.eta - m2.eta) -
cos(m1.phi - m2.phi)))

fill_histogram(mass)

translated to array references
plur.compile.run(arrays, dimuon)

23 / 27

Measurements in a real system

I’m using Python as a stepping-stone toward Femtocode. By transforming Python
object references, we can turn it into nothing but arrays and number-crunching.

Numba, a Python-to-LLVM compiler, is particularly good at optimizing this.

objects in Python code
def dimuon(event):

n = len(event.muons)
for i in range(n):

for j in range(i+1, n):
m1 = event.muons[i]
m2 = event.muons[j]
mass = sqrt(2*m1.pt*m2.pt*(

cosh(m1.eta - m2.eta) -
cos(m1.phi - m2.phi)))

fill_histogram(mass)

translated to array references
plur.compile.run(arrays, dimuon)

23 / 27

General code transformation for all types is hard

Concentrate on the minimal set of type generators:

Primitives: fixed-width numbers, booleans, characters.

Lists: arbitrary-length lists of another type.

Unions: set of possible types; runtime object is exactly one possibility.

Records: package of several named, typed fields; runtime object has all
nested subfields.

Other common types (such as strings) can be constructed from these (arbitrary-length
list of characters, for instance).

https://github.com/diana-hep/plur

24 / 27

https://github.com/diana-hep/plur

General code transformation for all types is hard

Concentrate on the minimal set of type generators:

Primitives: fixed-width numbers, booleans, characters.

Lists: arbitrary-length lists of another type.

Unions: set of possible types; runtime object is exactly one possibility.

Records: package of several named, typed fields; runtime object has all
nested subfields.

Other common types (such as strings) can be constructed from these (arbitrary-length
list of characters, for instance).

https://github.com/diana-hep/plur

24 / 27

https://github.com/diana-hep/plur

General code transformation for all types is hard

Concentrate on the minimal set of type generators:

Primitives: fixed-width numbers, booleans, characters.

Lists: arbitrary-length lists of another type.

Unions: set of possible types; runtime object is exactly one possibility.

Records: package of several named, typed fields; runtime object has all
nested subfields.

Other common types (such as strings) can be constructed from these (arbitrary-length
list of characters, for instance).

https://github.com/diana-hep/plur

24 / 27

https://github.com/diana-hep/plur

General code transformation for all types is hard

Concentrate on the minimal set of type generators:

Primitives: fixed-width numbers, booleans, characters.

Lists: arbitrary-length lists of another type.

Unions: set of possible types; runtime object is exactly one possibility.

Records: package of several named, typed fields; runtime object has all
nested subfields.

Other common types (such as strings) can be constructed from these (arbitrary-length
list of characters, for instance).

https://github.com/diana-hep/plur

24 / 27

https://github.com/diana-hep/plur

General code transformation for all types is hard

Concentrate on the minimal set of type generators:

Primitives: fixed-width numbers, booleans, characters.

Lists: arbitrary-length lists of another type.

Unions: set of possible types; runtime object is exactly one possibility.

Records: package of several named, typed fields; runtime object has all
nested subfields.

Other common types (such as strings) can be constructed from these (arbitrary-length
list of characters, for instance).

https://github.com/diana-hep/plur

24 / 27

https://github.com/diana-hep/plur

Relationship to Apache Arrow

The way that Primitives, Lists, (sparse) Unions, and Records are
represented are a subset of the Apache Arrow specification, so in

principle this ought to make Python— with arbitrarily nested loops—
fast on Arrow dataframes.

Is anyone else interested in that?

25 / 27

Relationship to Apache Arrow

The way that Primitives, Lists, (sparse) Unions, and Records are
represented are a subset of the Apache Arrow specification, so in

principle this ought to make Python— with arbitrarily nested loops—
fast on Arrow dataframes.

Is anyone else interested in that?

25 / 27

Last thought: manage the data in columns, too!

One reason users copy data is to enrich it with derived features:

+ + ‒ ‒ + ‒ ‒ + +
0 3 5electron-offsets

electron-charge

electron-energy

(event 1) (event 2) (event 3)

If the data are addressed as individual columns, rather than files, users can change the
structure of the data by adding new columns, without copying.

26 / 27

Last thought: manage the data in columns, too!

One reason users copy data is to enrich it with derived features:

+ + ‒ ‒ + ‒ ‒ + +
0 3 5electron-offsets

electron-charge

electron-energy

(event 1) (event 2) (event 3)

If the data are addressed as individual columns, rather than files, users can change the
structure of the data by adding new columns, without copying.

26 / 27

Last thought: manage the data in columns, too!

One reason users copy data is to enrich it with derived features:

+ + ‒ ‒ + ‒ ‒ + +
0 3 5

0 2 3

0 4 8

2 3 5

7

6

electron-offsets

electron-charge

electron-energy

Zboson-offsets

Zboson-energy

Zboson-e+

Zboson-e‒

(event 1) (event 2) (event 3)

(found 1) (found 1) (found 2)

If the data are addressed as individual columns, rather than files, users can change the
structure of the data by adding new columns, without copying.

26 / 27

Last thought: manage the data in columns, too!

One reason users copy data is to enrich it with derived features:

+ + ‒ ‒ + ‒ ‒ + +
0 3 5

0 2 3

0 4 8

2 3 5

7

6

electron-offsets

electron-charge

electron-energy

Zboson-offsets

Zboson-energy

Zboson-e+

Zboson-e‒

(event 1) (event 2) (event 3)

(found 1) (found 1) (found 2)

ve
rs

io
n

1

If the data are addressed as individual columns, rather than files, users can change the
structure of the data by adding new columns, without copying.

26 / 27

Last thought: manage the data in columns, too!

One reason users copy data is to enrich it with derived features:

+ + ‒ ‒ + ‒ ‒ + +
0 3 5

0 2 3

0 4 8

2 3 5

7

6

electron-offsets

electron-charge

electron-energy

Zboson-offsets

Zboson-energy

Zboson-e+

Zboson-e‒

(event 1) (event 2) (event 3)

(found 1) (found 1) (found 2)

ve
rs

io
n

1

ve
rs

io
n

2

If the data are addressed as individual columns, rather than files, users can change the
structure of the data by adding new columns, without copying.

26 / 27

Last thought: manage the data in columns, too!

One reason users copy data is to enrich it with derived features:

+ + ‒ ‒ + ‒ ‒ + +
0 3 5

0 2 3

0 4 8

2 3 5

7

6

electron-offsets

electron-charge

electron-energy

Zboson-offsets

Zboson-energy

Zboson-e+

Zboson-e‒

(event 1) (event 2) (event 3)

(found 1) (found 1) (found 2)

ve
rs

io
n

1

ve
rs

io
n

2

If the data are addressed as individual columns, rather than files, users can change the
structure of the data by adding new columns, without copying.

26 / 27

I hope it was interesting
to learn about data

issues in particle
physics.

But I’m really interested in hearing back from you:
do you have suggestions or do you think these

tools could be useful in your work?

If it would help but needs to be more mature, are
you interested in collaborating?

pivarski@fnal.gov

27 / 27

