
Femtocode: query system for HEP

datadb:
original input data

from the experiments.

get input
data

get detailed

descriptions

get results

sa
ve

 re
su

lts

assign work

redire
ct

requests

for d
atase

t d
esc

rip
tio

ns

query and
progress

(same call)

compute:
performs calculations

in first-ready-first-serve
order, maintains an
input data cache,
sends results to

store.

dispatch:
assigns subtasks

to compute if not in
store, compiles code,

redirects metadb,
and aggregates

all results.

metadb:
responds to requests

for dataset descriptions
at client and compute

levels of detail.

client:
pure Python,

part of the base
Femtocode
package.

create new
tables for

users to query

store:
saves partial results
for a specified length

of time (days or weeks).
Lets users repeat

queries with
impunity.

High-level language Low-level execution

What's a
query system?

How it differs from what we do now

Performance studies

User asks a question, gets an answer
quickly enough to explore the data.

Like a Google query, but aggregating
HEP data, returning (e.g.) histograms.

Embedded within an analysis script:
provides sliced projections of the data
for users to fit/plot/analyze in any way
they want.

Physicists arrange data as sets of files that
have to be filtered into progressively

smaller sets of files until the
final set is small enough

for real-time data
aaaaanalysis.

Instead, we propose
a service that serves
aggregated views of
analysis object data
on demand.

Must be responsive
to requests in real-
time: ~1 sec for each
scan over a dataset.

User writes expressions that pick apart the structure of objects
within arbitrary-length lists, to any depth of nesting.

Higher-order functions like .map, .pairs, .filter, .reduce
instead of explicit for loops.

Femtocode query language is distributed in quoted snippets
throughout a structured workflow and tree of aggregators.
 .

(See http://histogrammar.org for histogram abstraction.)

No runtime errors:
 .

Type system includes min/max ranges of numbers and collection
lengths, so that out-of-domain errors are caught at compile-time.
 .

Examples: "x/y" must be "if y != 0: x/y else: None".
 .

Examples: filter("goodmuons.size >= 2") above ensures
Examples: that we can assign two of them as mu1, mu2.

Total functional language:
 .

Every expression that compiles returns a result. (For simplicity,
recursion is not allowed.)

No objects at runtime:
 .

All nested structures are represented as homogeneous arrays.
 .

type = collection(collection(record(a=integer, b=real)))
 .

values = [[(1, 1.1)] [] [(2, 2.2) (3, 3.3)]] [[(4, 4.4)]]
 .

becomes
 .

data[][]@size = 3 1 0 2 1 1
data[][]-a = 1 2 3 4
data[][]-b = 1.1 2.2 3.3 4.4

muons.map({mu1 =>
 muons.map({mu2 =>
 e1 = mu1.p**2 + 0.105658**2;
 e2 = mu2.p**2 + 0.105658**2;
 e1 + e2
 }).max
 }).max

#0 := **(muons[]-p, 2)
#1 := +(#0, 0.011164)
 .

#2@size := $explodesize(muons[], muons[])
#2 := $explodedata(#1, #2@size, (muons[]))
#3 := $explodedata(#1, #2@size, (muons[], muons[]))
#4 := +(#2, #3)
#5 := $implode(#4, muons[], "max")
#6 := $implode(#5, None, "max")

Each non-$ statement can be a branchless, loopless GPU kernel
or all statements can be grouped by @size as CPU loops.

loop over muons[]@size

over #2@size

physicist
unnecessarily
wrote these
lines in the
loop over
muon pairs

}

CMSSW EDAnalyzer (C++ event framework)
TTree::Draw in ROOT (HEP analysis toolkit)
minimal disk read and unzip
allocating C++ objects on heap, iterating, deleting
allocating C++ objects on stack and iterating
Femtocode loop, current implementation
minimal single-threaded loop in C (our goal)
same loop on 128 threads in KNL's MCDRAM
equivalent on Tesla P100-SXM2 GPU

0.018 MHz
1.5 MHz
2.8 MHz
12 MHz
31 MHz
54 MHz

250 MHz
8 000 MHz

57 000 MHz

Microbenchmarks to get a sense of scale:
 .

Just adding a constant to an array of 64-bit floats on different systems.
The first are disk limited, the last are memory bandwidth limited.

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120

ra
te

 o
f m

em
or

y-
lim

ite
d

op
er

at
io

n
on

 6
4-

bi
t f

lo
at

s
(M

H
z)

number of processes

Knights Landing, MCDRAM
Knights Landing, normal RAM

32-core machine, normal RAM

• Typical analysis asks for ~10 TB of input data.
• Typical query touches < 1% of the columns.
• Disk read at 40 MB/sec ⇒ 2.6 sec for 1000 disks.
• Typical analysis touches < 10% of the columns.
• Therefore, fill 1 TB of a cluster's RAM as cache.
• Cache read at 1 GB/sec ⇒ 0.1 sec for 1000 cores.

Query
server

Distributes query among
compute nodes, avoids
duplicate work.

use MCDRAM
instead of
main memory

