Femtocode: query system for HEP

What's a
query system?

User asks a question, gets an answer
quickly enough to explore the data.

How it difters from what we do now

Physicists arrange data as sets of files that Instead, we propose
have to be filtered into progressively a service that serves
smaller sets of files until the aggregated views of
final set is small enough analysis object data
for real-time data on demand.
analysis.

Like a Google query, but aggregating

HEP data, returning (e.g.) histograms. Must be responsive

to requests in real-
time: ~1 sec for each
scan over a dataset.

Embedded within an analysis script:
provides sliced projections of the data
for users to fit/plot/analyze in any way
they want.

Low-level execution

No objects at runtime:

High-level language

User writes expressions that pick apart the structure of objects
within arbitrary-length lists, to any depth of nesting.

All nested structures are represented as homogeneous arrays.

type = collection(collection(record(a=integer, b=real)))

Higher-order functions like .map, .pairs, .filter, .reduce
[[(1, 1.1)T []1 [(2, 2.2) (3, 3.3)1] [[(4, 4.4)]]

instead of explicit for loops.

values

becomes
Femtocode query language is distributed in quoted snippets
throughout a structured workflow and tree of aggregators.

(See http://histogrammar.org for histogram abstraction.)

muons.map({mul =>

workflow = session.source("b-physics") # pull from a named dataset

.define(goodmuons = "muons.filter($1.pt > 5)") # muons with pt > 5 are good muons .map({mUZ =>
.filFer("goodmuon'si.”size >= 2") # keep events with at least two e]. = mu1 . p**z + O . 105658**2 ;
.define(dimuon = """
mul, mu2 = goodmuons.maxby($1.pt, 2); # pick the top two by pt ez - mu2 .p**z + O ° 105658**2;
energy = mul.E + mu2.E; # compute imploded energy/momentum
pX = mul.pX + mu2.px; el + ez
Py = mul.py + mu2.py; }) .Inax

pz = mul.pz + mu2.pz;

}) .max
rec(mass = sqrt(energy**2 - px**2 - py**2 - pz**2),
pt = sqrt(px**2 + py**2),
phi = atan2(py, px),
eta = 1In((energy + pz)/(energy - pz))/2) # construct a record as output #O 5 = * % (muonS[]—p, 2)
nnn) e
.bundle(# make a bundle of plots #]' ¢ +(# O 4 O ° O 1 1]‘ 64)
mass = bin(120, 0, 12, "dimuon.mass"), # using the variables we’ve made . .
pt = bin(100, 6, 160, "dimuon.pt"), #2@size := Sexplodesize(muons|[], muons|[])
eta = bin(100, -5, 5, "dimuon.eta"), o — -
phi = bin(314, 0, 2*pi, "dimuon.phi + pi"), #2 ¢ $eXplOdedata(# 1 4 #2 @SJ.'Ze 4 (mU.OnS []))
muons = loop("goodmuons", "mu", bundle(# also make plots with one muon per entry #3 = $explOdedata(#l ’ #Z@Slze, (muonS[] ’ muonS[]))
pt = bin(100, 0, 100, "mu.pt"), . —
eta = bin(100, -5, 5, "mu.eta"), #4 =+ (#2 ’ #3)
phi = bin(314, -pi, pi, "mu.phi") #5 e = Simplode (#4 , muons [] , "max n)
)) .
) #6 := Simplode(#5, None, "max")
pending = workflow.submit() # submit the query
pending["mass"].plot () # and plot results while they accumulate Each non-$ statement can be a branchless, loopless GPU kernel
pending["muons"]["pt"].plot() # (they’ll be animated) .
| - | - or all statements can be grouped by @size as CPU loops.
blocking = pending.await() # stop the code until the result is in
massplot = blocking.plot.root("mass") # convert to a familiar format, like ROOT
massplot.Fit("gaus") # and use that package’s tools

No runtime errors:

Query
SCI'VvVer

dispatch:
assigns subtasks \
to compute if not in
store, compiles code,
redirects metadb,
and aggregates
all results.

Type system includes min/max ranges of numbers and collection
lengths, so that out-of-domain errors are caught at compile-time.

Examples: "x/y" mustbe "if y != 0: x/y else: None".

get input
data

compute:
performs calculations
in first-ready-first-serve
order, maintains an
input data cache,

client:
pure Python,

part of the base
Femtocode

package.

filter ("goodmuons.size >= 2") above ensures
that we can assign two of them as mul, mu2.

query and
progress
(same call)

datadb: \
original input data
from the experiments.
\
%0\
?fe
)
g’b
Create new
\ tables for
users to query

Total functional language:

Distributes query among
compute nodes, avoids
duplicate work.

saves partial results
for a specified length
of time (days or weeks).
Lets users repeat
queries with
impunity.

Every expression that compiles returns a result. (For simplicity,
recursion is not allowed.)

10000 | | |
o Microbenchmarks to get a sense of scale: 5 chights Landing, MCORAM
= Knights Landing, normal RAM
P e rf() r I I l a l l C e S t l I dl e S Just adding a constant to an array of 64-bit floats on different systems. —— 32 core maching, nommal RAM X
The first are disk limited, the last are memory bandwidth limited. = " i
: : : 3 ¥ *
® Typlcal anaIYSIS asks for _ 10 TB Of lnput data. 0.018 MHz CMSSW EDAna.lyzer (C++ event frarn.eWOI'k). S 6000 - A * _
. 1.5 MHz TTree: :Drawin ROOT (HEP analysis toolkit) 3
* Typical query touches < 1% ot the columns. 2.8MHz minimal disk read and unzip :) < | use M((i’,DtBAM
. .)]) i i T 4000 |- x Imstead o _
e Disk read at 40 MB/sec = 2.6 sec for 1000 disks. 12MHz allocating C++ objects on heap, iterating, deleting £ main memory
e Tvpical lvsis t h 10% of th J 31 MHz allocating C++ objects on stack and iterating -
ypica anaOYSIS ouches < o Ol the cotumns. 54 MHz Femtocode loop, current implementation % 2000 - RRE - - E
e Therefore, fill 1 TB of a cluster's RAM as cache. 250 MHz minimal single-threaded loop in C (our goal) 5
8 000 MHz same loop on 128 threads in KNL's MCDRAM i | | | | |

o —
Cache read at 1 GB/sec = 0.1 sec for 1000 cores. 57000 MHz equivalent on Tesla PL00-SXM2 GPU 0w w0 s w w0 1

number of processes

