
Bridging the Particle Physics and Big Data Worlds

Jim Pivarski

Princeton University – DIANA-HEP

October 25, 2017

1 / 29



Particle physics: the original Big Data

For decades, our computing needs were unique:

I large datasets (too big for one computer: a moving definition!),

I complex structure (nested data, web of relationships within each event),

I has to be reduced (aggregated, by histogramming, usually)

I to be modeled (fitting to extract physics results).

Today these criteria apply equally, or more so, to “web scale data.”
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200 PB is a lot of data
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200 PB is a lot of data, but for Amazon, it’s two truckloads
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Also a much larger community

Rate of web searches for “ROOT TTree” vs. “Spark DataFrame” (Google Trends):

Similarly for question-and-answer sites:

I RootTalk: 14,399 threads in 1997–2012 (15 years)

I StackOverflow questions tagged #spark: 26,155 in the 3.3 years the tag has
existed. (Not counting CrossValidated, Spark Developer and User mailing lists. . . )

More users to talk to; more developers adding features/fixing bugs.
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Particle physics is a special case

Particle physics

I Events (modulo cosmics vetos or
time-dependent calibrations) may be
processed in isolation; embarrassingly
parallel.

I Once collected, physics datasets are
immutable (with revisions).

I Often fitting a model with a small
number of parameters.

Big Data

I All-to-all problems are common, such
as matching a customer’s purchases
with all other purchases to make a
recommendation.

I Transactions accumulate in the
database during analysis.

I Modeling human behavior, more
interested in predictions than
description, so models may have
thousands of free parameters.
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Our software is largely isolated from these developments
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Who am I? Why am I giving this talk?

Jim Pivarski

I 5 years CLEO (9 GeV e+e−)

I 5 years CMS (7 TeV pp)

I 5 years Open Data Group

I 2 years Project DIANA-HEP

hyperspectral imagery
automobile traffic
network security
Twitter sentiment
Google n-grams
DNA sequence analysis
credit card fraud detection

and “Big Data” tools

My goal within DIANA-HEP is to make it easier for physicists to use Big Data
tools in their analyses, particularly for interactive, exploratory analysis.
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What to do with physics software: three cases

Case I: Physics software that
serves the same function as
software in the Big Data
community.

Big Data community has
better resources for

I maintaining code

I catching bugs

I revising bad designs.

Case II: Domain-specific
software for our analyses.
Example: “HiggsCombiner.”

Obviously. This really is a
unique problem.

Case III: Physics software or
concepts that would benefit
the Big Data community.

Cultural exchange goes in
both directions.
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All three cases in a single story: porting an analysis
from ROOT to Spark.
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CMS Big Data Project

I Oliver Gutsche, Matteo
Cremonesi, Cristina Suárez
(Fermilab) wanted to try their
CMS dark matter search on
Spark.

I My first DIANA-HEP project:
I joined to plow through
technical issues before the
analysts hit them.

https://cms-big-data.github.io/
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How to get the data into Spark (which runs in Java)

A year of trial-and-error in one slide

1. Java Native Interface (JNI)
No! This ought to be the right solution, but Java
and ROOT are both large, complex applications
with their own memory management: couldn’t keep
them from interfering (segmentation faults).

ROOT

Spark

Java Virtual Machine

process

2. Python as glue: PyROOT and PySpark in the same process

ROOT

PyROOT PySpark

Python

Spark

Java Virtual Machine
socket

process 1 process 2
PySpark is a low-performance
solution: all data must be passed
over a text-based socket and
interpreted by Python.

3. Convert to a Spark-friendly format, like Apache Avro

We used this for most of the year. Efficient after conversion, but
conversion step is awkward. Avro’s C library is difficult to deploy.

This problem is incidental, not essential. Industry-standard
formats like Avro and Parquet can store complex physics events;

we just happen to have a lot of data in ROOT files.
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This was a missed opportunity for exporting physics solutions!

ROOT was storing nested data structures in a columnar format (for
faster access) over a decade before it was reinvented at Google.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis. Dremel: Interactive Analysis of
Web-Scale Datasets (2010).
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Easiest solution: reimplement ROOT I/O in Java

root4j/
spark-root

Java/Scala For Spark and other Big Data
projects that run on Java.

Started by Tony Johnson in 2001,
updated by Viktor Khristenko.
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Example session (native Spark, which is Scala)

Launch Spark with packages from Maven Central.

spark-shell --packages org.diana-hep:spark-root_2.11:x.y.z, \
org.diana-hep:histogrammar_2.11:1.0.4

Read ROOT files like any other DataFrame input source.

val df = spark.sqlContext.read.root(
"hdfs://path/to/files/*.root")

df.printSchema()
root
|-- met: float (nullable = false)
|-- muons: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- pt: float (nullable = false)
| | |-- eta: float (nullable = false)
| | |-- phi: float (nullable = false)
|-- jets: array (nullable = false)
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Example session (PySpark in Python)

Launch Spark with packages from Maven Central.
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Read ROOT files like any other DataFrame input source.
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root
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Example session (native Spark and PySpark)

df.show()
+---------+--------------------+--------------------+
| met| muons| jets|
+---------+--------------------+--------------------+
| 55.59374|[[28.07075,-1.331...|[[194.19714,-2.65...|
|39.440292| []|[[93.64958,-0.273...|
|2.1817229|[[5.523367,-0.375...|[[96.09923,0.7058...|
| 80.5822|[[48.910114,-0.17...|[[165.2686,0.2623...|
| 84.43806| []|[[51.87823,1.6442...|
| 84.63146|[[33.84279,-0.062...|[[137.74776,-0.45...|
| 393.8167|[[25.402626,-0.66...|[[481.8268,-1.115...|
| 75.0873| []|[[144.62373,-2.21...|
|2.6512942|[[6.851382,2.3145...|[[72.08256,-1.713...|
|36.753353| []|[[72.7172,-1.3265...|
+---------+--------------------+--------------------+
only showing top 10 rows
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Example session (Spark)

// Bring dollar-sign notation into scope.
import spark.sqlContext.implicits._

// Compute event weight with columns and constants.
df.select(($"lumi"*xsec/nGen) * $"LHE_weight"(309)).show()

// Pre-defined function (notation’s a little weird).
val isGoodEvent = (

($"evtHasGoodVtx" === 1) &&
($"evtHasTrg" === 1) &&
($"tkmet" >= 25.0) &&
($"Mu_pt" >= 30.0) &&
($"W_mt" >= 30.0))

// Use it.
println("%d events pass".format(

df.where(isGoodEvent).count()))
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Example session (PySpark)

# Python trick: make columns Python variables.
for name in df.schema.names:

exec("{0} = df[’{0}’]".format(name))

# Look at a few event weights.
df.select((lumi*xsec/nGen) * LHE_weight[309]).show()

# Pre-defined function (notation’s a little different).
isGoodEvent = (

(evtHasGoodVtx == 1) &
(evtHasTrg == 1) &
(tkmet >= 25.0) &
(Mu_pt >= 30.0) &
(W_mt >= 30.0))

# Use it.
print "{} events pass".format(

df.where(isGoodEvent).count())
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Example session (Spark)

// Use Histogrammar to make histograms.
import org.dianahep.histogrammar._
import org.dianahep.histogrammar.sparksql._
import org.dianahep.histogrammar.bokeh._

// Define histogram functions with SparkSQL Columns.
val h = df.Label(

"muon pt" -> Bin(100, 0.0, 50.0, $"Mu_pt"),
"W mt" -> Bin(100, 0.0, 120.0, $"W_mt"))

// Plot the histograms with Bokeh.
val bokehhist = h.get("muon pt").bokeh()
plot(bokehhist)
val bokehhist2 = h.get("W mt").bokeh()
plot(bokehhist2)
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Speaking of plots. . .

Spark and Big Data in general are weak in plotting.

They have fancy visualizations (d3), but lack convenient workaday
routines for quick histograms, profiles, heatmaps, lego plots, etc.

(Exception: Python and R have good interactive graphics for in-memory analytics.)
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Analysis in Spark is a chain of higher-order functions

In Spark, you submit work by passing functions in a chain:

one = source1.textFile("some.txt")
.map(x => x.upper())

two = source2.cassandraTable
.filter(x => x.field > 3)

three = one.join(two)
four = three.map((x, y) => (y, x)).cache()
five = four.reduce((x, y) => x + y)
six = five.saveAsTextFile("other.txt")

Thus, the code doesn’t depend on whether or not it’s parallelized
(so it can be massively parallelized).
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ROOT histogram API is cumbersome in this setting

ROOT (or any HBOOK-style) histograms

x = Histogram(100, -5.0, 5.0)

for event in events:
x.fill(event.calcX())

x.plot()

Using them in Spark

x = events.aggregate(
Histogram(100, -5.0, 5.0),
lambda h, event: (

h.fill(event.calcX())),
lambda h1, h2: (

h1 + h2))

x.plot()
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lambda hs, event: (
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Solution: make the histograms functional, like the rest of Spark

Histogram constructor as a higher-order function:

h = Histogram(numBins, lowEdge, highEdge, fillRule)

where fillRule is a function : data → R that determines which bin an element of
data increments.

All domain-specific knowledge is in the constructor. The filling function may now be
generic (and automated).

h.fill(datum) # calls fillRule(datum) internally
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Familiar histogram types are now generated by combinators

Histograms:

Bin(num, low, high, fillRule,
Count())

Two-dimensional histograms:

Bin(xnum, xlow, xhigh, xfill,
Bin(ynum, ylow, yhigh, yfill,
Count()))

Profile plots:

Bin(xnum, xlow, xhigh, xfill,
Deviate(yfill))

where Deviate aggregates a mean and
standard deviation.

Mix and match binning methods:

IrregularlyBin([-2.4, -2.1, -1.5,
0.0, 1.5, 2.1, 2.4],

filleta,
Bin(314, -3.14, 3.14, fillphi,

Count()))

SparselyBin(0.01, filleta,
Bin(314, -3.14, 3.14, fillphi,

Count()))

Categorize(fillByName,
Bin(314, -3.14, 3.14, fillphi,

Count()))
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It all got mathematical pretty fast. . .

For transparent parallelization, combinators must

be additive:
independent of whether datasets are partitioned.

fill(data1 + data2) = fill(data1) + fill(data2)

be homogeneous in the weights:
fill weight 0.0 corresponds to no fill, 1.0 to simple fill, 2.0 to double-fill, . . .

fill(data,weight) = fill(data) · weight



lin
ea

r

be associative:
independent of where datasets get partitioned.

(h1 + h2) + h3 = h1 + (h2 + h3)
have an identity:

for both the fill and + methods.

h + 0 = h, 0 + h = h, fill(data, 0) = 0

 m
on

oi
d
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http://histogrammar.org

(Get it?)
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Other projects in development

I uproot: fast reading of ROOT files into Numpy/Pandas/Apache Arrow.

I Arrowed: transpiling complex analysis functions to skip object
materialization (like SQL term rewriting, but for objects in Arrow format).

I Extending ROOT to use an object store database instead of seek points in a
file (the “petabyte ROOT file” project).

I Speeding up analysis cuts with database-style indexing.

I Femtocode: Domain Specific Language (DSL) for particle physics queries.

All of the above are parts of the following:

I To develop a centralized query service that is as responsive as a private skim:
to eliminate the need to copy data just to analyze it.
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Conclusions
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we are here

we could be here
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