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Particle physics: the original Big Data

For decades, our computing needs were unique:

» large datasets too big for one computer: a moving definition!),

(
» complex structure (nested data, web of relationships within each event),
» has to be reduced (aggregated, by histogramming, usually)
» to be modeled (

fitting to extract physics results).

Today these criteria apply equally, or more so, to “web scale data.”
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Rate of web searches for “ROOT TTree” vs. “Spark DataFrame” (Google Trends):

Interest over time

@® ROOT TTree @ Spark DataFrame

Search term Search term

Similarly for question-and-answer sites:
» RootTalk: 14,399 threads in 1997-2012 (15 years)

» StackOverflow questions tagged #spark: 26,155 in the 3.3 years the tag has
existed. (Not counting CrossValidated, Spark Developer and User mailing lists. . .)

More users to talk to; more developers adding features/fixing bugs.
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Particle physics is a special case

Particle physics

» Events (modulo cosmics vetos or
time-dependent calibrations) may be
processed in isolation; embarrassingly
parallel.

» Once collected, physics datasets are
immutable (with revisions).

» Often fitting a model with a small
number of parameters.

Big Data

» All-to-all problems are common, such
as matching a customer’s purchases
with all other purchases to make a
recommendation.

» Transactions accumulate in the
database during analysis.

» Modeling human behavior, more
interested in predictions than
description, so models may have
thousands of free parameters.



Our software is largely isolated from these developments
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Who am 1?7 Why am | giving this talk?

hyperspectral imagery
automobile traffic

Jim Pivarski network security
{ / Twitter sentiment
» 5 years CLEO (9 GeV ete™) Google n-grams
> 5 years CMS (7 TeV pp) DNA sequence analysis

credit card fraud detection

» 5 years Open Data Group — i "
and “Big Data” tools

> 2 years Project DIANA-HEP

My goal within DIANA-HEP is to make it easier for physicists to use Big Data
tools in their analyses, particularly for interactive, exploratory analysis.



AN

Collaborative

]

Establish infrastructure for a higher-level of
collaborative analysis, building on the successful
patterns used for the Higgs boson discovery and
enabling a deeper communication between the

theoretical community and the experimental
community

Faster Processing
Increase the CPU and 10 performance needed to

reduce the iteration time so crucial to exploring
new ideas

Products

DIANA Fellows Blog

N

Reproducible Ana

Streamline efforts associated to reproducibility,
analysis preservation, and data preservation by
making these native concepts in the tools

Bette

Develop software to effectively exploit emerging
many- and multi-core hardware.
Promote the concept of software as a research
preduct

Improve the interoperability of HEP tools with
the larger scientific software ecosystem,
incorporating best practices and algorithms
from other disciplines into HEP

Training
Provide training for students in all of our core
research topics.



Team Activities/Products DIANA Fellows Blog
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What to do with physics software: three cases

Case |: Physics software that  Case Il: Domain-specific Case llI: Physics software or
serves the same function as software for our analyses. concepts that would benefit
software in the Big Data Example: “HiggsCombiner.”  the Big Data community.
community.

GATE

T

Big Data community has Obviously. This really is a Cultural exchange goes in
better resources for unique problem. both directions.

» maintaining code
» catching bugs

» revising bad designs.



All three cases in a single story: porting an analysis
from ROOT to Spark.
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CMS Big Data Project

» Oliver Gutsche, Matteo
Cremonesi, Cristina Sudrez
(Fermilab) wanted to try their
CMS dark matter search on
Spark.

» My first DIANA-HEP project:
| joined to plow through
technical issues before the
analysts hit them. B

https://cms-big-data.github.io/

/29


https://cms-big-data.github.io/

How to get the data into Spark (which runs in Java)

A year of trial-and-error in one slide

1. Java Native Interface (JNI)
No! This ought to be the right solution, but Java
and ROOT are both large, complex applications
with their own memory management: couldn't keep
them from interfering (segmentation faults).

2. Python as glue: PyROOT and PySpark in the same process

process 1 process 2

PySpark is a low-performance [ ;
. i Python Java Virtual Machine | :
solution: all data must be passed &> s Copa ‘

over a text-based socket and
1 ROOT

interpreted by Python.
3. Convert to a Spark-friendly format, like Apache Avro

We used this for most of the year. Efficient after conversion, but
conversion step is awkward. Avro's C library is difficult to deploy.
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How to get the data into Spark (which runs in Java)

A year of trial-and-error in one slide

1. Java Native Interface (JNI) B —
No! This ought to be the right solution, but Java pavalVialblacing
and ROOT are both large, complex applications ’_‘_‘.W :
with thair svwn mamary manaacamant: cauldn’t kaan ool

This problem is incidental, not essential. Industry-standard
formats like Avro and Parquet can store complex physics events;
we just happen to have a lot of data in ROOT files.

OVET d TEXT-DJSEU SOCKEL dTTta ROOT

interpreted by Python.

3. Convert to a Spark-friendly format, like Apache Avro

We used this for most of the year. Efficient after conversion, but
conversion step is awkward. Avro's C library is difficult to deploy.
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This was a missed opportunity for exporting physics solutions! @

ROOT was storing nested data structures in a columnar format (for
faster access) over a decade before it was reinvented at Google.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis. Dremel: Interactive Analysis of
Web-Scale Datasets (2010).

storage and reduce CPU cost due to cheaper compression. Column
stores have been adopted for analyzing relational data [1] but to the
best of our knowledge have not been extended to nested data mod-
els. The columnar storage format that we present is supported by
many data processing tools at Google, including MR, Sawzall [20],
and FlumelJava [7].

In this paper we make the following contributions:

e We describe a novel columnar storage format for nested
data. We present algorithms for dissecting nested records 30




Easiest solution: reimplement ROOT 1/0 in Java

root4j/ Java/Scala  For Spark and other Big Data  Started by Tony Johnson in 2001,

spark-root projects that run on Java. updated by Viktor Khristenko.

[ diana-hep / root4j @Wwatch~ 10 sStar 2 YFork 2
<> Code Issues 1 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

A fork of http://java.freehep.org/freehep-rootio/ with hooks for Spark DataFrames Edit

Add topics

D 45 commits ¥ 2 branches © 2 releases 28 2 contributors s LGPL-2.1

Branch: master « New pull request Create new file ~ Upload files = Find file
“ vkhristenko making hadoop as provided dependency Latest commit 2a7bd47 on Mar 15
| sic fixing issues with string and other minor updates 3 months ago
[E) .gitignore updating gitignore 6 months ago
[£) DATAFORMATS.md updating data format description 4 months ago



Easiest solution: reimplement ROOT 1/O in Java, JS @

root4j/ Java/Scala  For Spark and other Big Data  Started by Tony Johnson in 2001,
spark-root projects that run on Java. updated by Viktor Khristenko.

JsRoot Javascript  For interacting with ROOT in  Sergey Linev
web browsers or standalone.
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Java/Scala

For Spark and other Big Data
projects that run on Java.

For interacting with ROOT in
web browsers or standalone.

go-hep ecosystem in Go.

For quickly getting ROOT
data into Numpy and Pandas
for machine learning.
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Started by Tony Johnson in 2001,
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Jim Pivarski (me)
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Easiest solution: reimplement ROOT 1/O in Java, JS, Go, Python @

root4j/ Java/Scala
spark-root

JsRoot Javascript

rootio Go

uproot Python
Rust?

For Spark and other Big Data
projects that run on Java.

For interacting with ROOT in
web browsers or standalone.

go-hep ecosystem in Go.

For quickly getting ROOT
data into Numpy and Pandas
for machine learning.

Started by Tony Johnson in 2001,
updated by Viktor Khristenko.

Sergey Linev

Sebastien Binet

Jim Pivarski (me)
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Example session (native Spark, which is Scala)

Launch Spark with packages from Maven Central.

spark-shell —--packages org.diana-hep:spark-root_2.11:x.y.z, \
org.diana-hep:histogrammar_2.11:1.0.4

Read ROOT files like any other DataFrame input source.

val df = spark.sglContext.read.root (
"hdfs://path/to/files/*.root")

df .printSchema ()
root
|-— met: float (nullable = false)
|-— muons: array (nullable = false)
| | -— element: struct (containsNull = false)
| | |-— pt: float (nullable = false)
| | |-— eta: float (nullable false)
| | |-— phi: float (nullable = false)
|-— Jets: array (nullable = false)

15/29



Example session (PySpark in Python)

Launch Spark with packages from Maven Central.

pyspark --packages org.diana-hep:spark-root_2.11:x.y.z, \
org.diana-hep:histogrammar_2.11:1.0.4

Read ROOT files like any other DataFrame input source.

df = sglContext.read.format ("org.dianahep.sparkroot™) \
.load("hdfs://path/to/files/*.root")

df .printSchema ()

root
|-— met: float (nullable = false)
|-— muons: array (nullable = false)
| | -— element: struct (containsNull = false)

| | |-— pt: float (nullable = false)
| | |-— eta: float (nullable = false)
| | |-— phi: float (nullable = false)

|-— Jets: array (nullable = false)
15/29



Example session (native Spark and PySpark)

df.show ()

to—— Fom Fom e —— +
| met | muons | Jets|
fom o o +
| 55.593741[[28.07075,-1.331...1[[194.19714,-2.65...]
139.440292 | [11[[93.64958,-0.273...|
[2.1817229|[[5.523367,-0.375...1[[96.09923,0.7058...

| 80.58221[[48.910114,-0.17...1[[165.2686,0.2623...|
| 84.43806| [11[[51.87823,1.6442...|
| 84.631461[[33.84279,-0.062...[[137.74776,-0.45...]
| 393.81671[[25.402626,-0.66...1[[481.8268,-1.115...|
| 75.0873| [11[[144.62373,-2.21...
|2.6512942|[[6.851382,2.3145...|[[72.08256,-1.713...]
|36.753353| [11[[72.7172,-1.3265...|
Fom——————— o o +

only showing top 10 rows

16 /29



Example session (Spark)

// Bring dollar-sign notation into scope.
import spark.sqglContext.implicits._

// Compute event weight with columns and constants.
df.select (($"lumi"+xsec/nGen) = S$"LHE_weight" (309)) .show ()

// Pre-defined function (notation’s a little weird).
val isGoodEvent = (
($"evtHasGoodVtx" === 1) &&
($"evtHasTrg" === 1) &&
($"tkmet" >= 25.0
($"Mu_pt" >= 30.0) &&
($"W_mt" >= 30.0))

// Use it.
println ("%d events pass".format (

df .where (isGoodEvent) .count () )) e



Example session (PySpark)

# Python trick: make columns Python variables.
for name in df.schema.names:
exec ("{0} = df["{0}"]".format (name))

# Look at a few event weights.
df.select ((lumirxsec/nGen) + LHE_weight[309]) .show /()

# Pre-defined function (notation’s a little different).

isGoodEvent = (
(evtHasGoodVtx == 1)

evtHasTrg == 1)

tkmet >= 25.0)

Mu_pt >= 30.0)

W_mt >= 30.0))

2 22 &

(
(
(
(

# Use it.
print "{} events pass".format (

df .where (isGoodEvent) .count ()) oo



Example session (Spark)

// Use Histogrammar to make histograms.
import org.dianahep.histogrammar.__

import org.dianahep.histogrammar.sparksql._
import org.dianahep.histogrammar.bokeh._

// Define histogram functions with SparkSQL Columns.

val h = df.Label
"muon pt" -> Bin (100, 0.0, 50.0, $"Mu_pt"),
"W mt" -> Bin (100, 0.0, 120.0, S$"W_mt"))

// Plot the histograms with Bokeh.

val bokehhist = h.get ("muon pt") .bokeh ()
plot (bokehhist)

val bokehhist2 = h.get ("W mt") .bokeh ()
plot (bokehhist2)

18/29



Example session (PySpark)

# Use Histogrammar to make histograms.
from histogrammar import =«

import histogrammar.sparksql
histogrammar.sparksqgl.addMethods (df)

# Define histogram functions with SparkSQL Columns.
h = df.Label (

muon_pt = Bin (100, 0.0, 50.0, Mu_pt),

W_mt = Bin (100, 0.0, 120.0, W_mt))

# Plot the histograms with PyROOT.

roothist = h.get ("muon_pt") .plot.root ("muon pt")
roothist.Draw ()

roothist2 = h.get ("W_mt") .plot.root ("W mt")
roothist2.Draw ()
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Example session (PySpark)

# Use Histogrammar to make histograms.

from histogrammar import =«
import histogrammar.sparksql

histogrammar.sparksqgl.addMethods (df)

# Define histogram functions with SparkSQL Columns.

h = df.Label (

muon_pt = Bin (100, 0.0, 50.0, Mu_pt),

W_mt = Bin (100, 0.0, 120.

# Plot the histograms with PyR(
roothist = h.get ("muon_pt") .plc
roothist.Draw ()
roothist2 = h.get ("W_mt") .plot
roothist2.Draw ()

0,

W_mt) )
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Speaking of plots. . . @

Spark and Big Data in general are weak in plotting.
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Speaking of plots. . . @

Spark and Big Data in general are weak in plotting.

They have fancy visualizations (d3), but lack convenient workaday
routines for quick histograms, profiles, heatmaps, lego plots, etc.

(Exception: Python and R have good interactive graphics for in-memory analytics.)
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Analysis in Spark is a chain of higher-order functions @

In Spark, you submit work by passing functions in a chain:

i

=

|textFile |.cassandraTable one = sourcel.textFile("some.txt")
o O
i .map (x => x.upper())
(L.ma.p. J)'ﬁlter two = sourceZ2.cassandraTable
\1%'“ filter(x => x.field > 3)
.map _-cache three = one.join (two)
.reduce O saveAsTextFile f(?ur = three.map((x, y) => (y, x)).cache()
P/ \ﬂ five = four.reduce((x, y) => x + vy)
six = five.saveAsTextFile ("other.txt")

Thus, the code doesn’t depend on whether or not it's parallelized
(so it can be massively parallelized).

20/29



ROQOT histogram API is cumbersome in this setting

ROOT (or any HBOOK-style) histograms

x = Histogram (100, -5.0, 5.0)

for event in events:
x.fill (event.calcX())

x.plot ()

Using them in Spark

X =

events.aggregate (
Histogram (100, -5.0, 5.0),
lambda h, event: (

h.fill (event.calcX())),
lambda hl, h2: (

hl + h2))

x.plot ()

21/29



ROQOT histogram API is cumbersome in this setting

ROOT (or any HBOOK:-style) histograms

x = Histogram (100, -5.0, 5.0)
y Histogram (100, -5.0, 5.0)

for event in events:
x.fill (event.calcX())
y.fill (event.calcY())

x.plot ()
y.-plot ()

Using them in Spark

x, y = events.aggregate (
(Histogram (100, -5.0, 5.0),
Histogram(100, -5.0, 5.0)),
lambda hs, event: (
hs[0].fill (event.calcX()),
hs[1].fill (event.calcY())),
lambda hsl, hs2: (
hs1[0] + hs2[0],
hsl[1l] + hs2[1]))

x.plot ()
y.plot ()
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ROQOT histogram API is cumbersome in this setting

Using them in Spark

X, y, z = events.aggregate(

ROOT (or any HBOOK:-style) histograms (Histogram (100, -5.0, 5.0),

x = Histogram (100, -5.0, 5.0) Histogram(100, -5.0, 5.0)

y = Histogram (100, -5.0, 5.0) Histogram (100, -5.0, 5.0)),
z = Histogram (100, -5.0, 5.0) lambda hs, event: (
hs[0].fill (event.calcX()),
for event in events: hs[1].fill (event.calcY()),
x.fill (event.calcX()) hs[2].fill (event.calcZ())),
y.fill (event.calcY()) lambda hsl, hs2: (
z.fill (event.calcZ()) hs1[0] + hs2[0],
hsl[1] + hs2[1],
x.plot () hsl[2] + hs2[2]))
y.plot ()
z.plot () x.plot ()
y.plot ()

z.plot ()
23/29



Solution: make the histograms functional, like the rest of Spark @

Histogram constructor as a higher-order function:

h = Histogram(numBins, lowEdge, highEdge, f£illRule)

where £illRule is a function : data — R that determines which bin an element of
data increments.
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Solution: make the histograms functional, like the rest of Spark @

Histogram constructor as a higher-order function:

h = Histogram(numBins, lowEdge, highEdge, f£illRule)

where £illRule is a function : data — R that determines which bin an element of
data increments.

All domain-specific knowledge is in the constructor. The filling function may now be
generic (and automated).

h.fill (datum) # calls fillRule (datum) internally

24 /29



Familiar histogram types are now generated by combinators

T

Histograms:

Bin (num, low, high, fillRule,
Count ())

Two-dimensional histograms:

Bin (xnum, xlow, xhigh, xfill,
Bin(ynum, ylow, yhigh, yfill,
Count ()))

Profile plots:

Bin (xnum, xlow, xhigh, xfill,
Deviate (yfill))

where Deviate aggregates a mean and
standard deviation.

Mix and match binning methods:

IrregularlyBin([-2.4, -2.1, -1.5,
0.0, 1.5, 2.1, 2.47,
filleta,
Bin (314, -3.14, 3.14, fillphi,
Count ()))

SparselyBin(0.01, filleta,
Bin (314, -3.14, 3.14, fillphi,
Count ()))

Categorize (fillByName,

Bin (314, -3.14, 3.14, fillphi,
Count ()))

25 /29



It all got mathematical pretty fast. ..

For transparent parallelization, combinators must

be additive:
independent of whether datasets are partitioned.
fill(data; + datay) = fill(data;) + fill(dataz) S
be homogeneous in the weights: =
fill weight 0.0 corresponds to no fill, 1.0 to simple fill, 2.0 to double-fill, . ..
fill(data, weight) = fill(data) - weight )
be associative:
independent of where datasets get partitioned. >
(h1 + h2) + h3 = hy + (h2 + h3) °
have an identity: 2
for both the fill and + methods.
h+0=h, 0+ h=h, fill(data,0)=0 )

26 /29



histo-grammar

/histo,'gieem.or/

http://histogrammar.org

(Get it?)


http://histogrammar.org

Other projects in development

v

v

v

v

v

uproot: fast reading of ROOT files into Numpy/Pandas/Apache Arrow.

Arrowed: transpiling complex analysis functions to skip object
materialization (like SQL term rewriting, but for objects in Arrow format).

Extending ROOT to use an object store database instead of seek points in a
file (the “petabyte ROOT file" project).

Speeding up analysis cuts with database-style indexing.

Femtocode: Domain Specific Language (DSL) for particle physics queries.

T
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Other projects in development @

» uproot: fast reading of ROOT files into Numpy/Pandas/Apache Arrow.

» Arrowed: transpiling complex analysis functions to skip object
materialization (like SQL term rewriting, but for objects in Arrow format).

» Extending ROOT to use an object store database instead of seek points in a
file (the “petabyte ROOT file" project).

» Speeding up analysis cuts with database-style indexing.
» Femtocode: Domain Specific Language (DSL) for particle physics queries.

All of the above are parts of the following:

» To develop a centralized query service that is as responsive as a private skim:

to eliminate the need to copy data just to analyze it.
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Conclusions

we are here

we could be here

effort

Y
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Conclusions

effort

we are here building bridges

.

we could be here

Y
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