
Optimizing ROOT IO For Analysis
Brian Bockelman, Zhe Zhang, University of Nebraska-Lincoln

Jim Pivarski, Princeton

What is Bulk IO?
Bulk IO is a set of techniques and APIs we developed for ROOT that allow the user to
 deserialize a large set of events at a time.

Why Bulk IO?
For small, simple events the overhead of ROOT library calls is much larger than the
 cost of serialization itself. By returning an entire basket of deserialized objects to the
 user, .

Further improvements can be achieved by returning serialized events to the user and
 allowing the compiler to inline deserialization in the event loop

Why Not Bulk IO?
Complex objects involving references or from polymorphic classes require expensive
 lookups to deserialize. In these cases, the library overheads are minimal and bulk IO
 provides little benefit.

This material is based upon work supported by the National Science
 Foundation under Grant No. 1450323. Any opinions, findings, and
 conclusions or recommendations expressed in this material are those of the
 author(s) and do not necessarily reflect the views of the National Science
 Foundation.

ROOT IO is an incredibly flexible format!
 It is used for the storage of many petabytes of

 archival HEP experiment data; it can easily store the
 complex objects that correspond to the experiment’s
 data models.
We propose the analysis is a distinct IO use case and
 to explore specialization.

What do users want?

 Speed! Users may iterate across their data many
 times – and science can’t proceed until the IO has
 finished.

What can they sacrifice?

 Disk space: The input to a typical analysis can
 often fit on a single hard drive (an experiment’s data
 may take up thousands).

 Complex data: Analysis events are often
 drastically simplified when compared to full
 experiment frameworks.
	

Why?

We look for techniques that tradeoff modest
 sacrifices in disk space and event complexity for
 drastic increases in speed.

We explore alternate decompression techniques –
 particularly the LZ4 algorithm – that focus on read
 performance over compression ratio.

We propose a new TTree API that invokes the ROOT
 IO code once per cluster instead of once per event.

Approach

Turbocharging ROOT with Bulk IO LZ4: A New Approach for Compression

Acknowledgements

Branches, Baskets, Events, Clusters:
 Oh My!

•  Event: The event is the atomic unit of work. Think
 rows in a table. Each event is composed of
 multiple objects.

•  Branch: There are similar objects in each event –
 these are organized as branches. Think columns in
 a table.

•  Basket: When serialized, ROOT writes (and
 compresses) the objects in the same branch – and
 from many contiguous events – into a basket.

•  Cluster: All the data from a group of events is
 written contiguously as part of an event cluster.

Micro benchmark shows order-magnitude speedup… 95%
performance of reading
 uncompressed data

15%
Larger files compared to
 zlib-based compression

Depending on the event content, with LZ4, we see:

But That’s Not All!
•  Analysis can be made faster by using more cores! See

 the Track 1 presentation “Increasing Parallelism in
 the ROOT I/O subsystem” at 17:20 on Thursday.

•  Join the weekly ROOT IO meetings to help this effort
 move forward!

ROOT IO: An Illustration

Decompression contributes to around ¼ of total CPU
cycles for events size between 4KB and 4MB. But as
event size goes to 40 bytes, deserialization and other
costs dominate.	

… with bulk IO consistently faster across access methods.

Branches
A B C D E

Ev
en

ts

1
2
3
4
5

Logical Layout

File Layout ...

Proposed change
 in default!

zlib-6	

zlib-1	
lz4hc-9	

lz4hc-5	

lz4	

New!
ROOT
 6.12

Each basket (a single color below) is
 compressed and written to the file. Bulk IO
 allows the user to read all the objects in a
 basket at once.

